Angiotensin II type 1 and type 2 receptors regulate basal skeletal muscle microvascular volume and glucose use.

نویسندگان

  • Weidong Chai
  • Wenhui Wang
  • Jia Liu
  • Eugene J Barrett
  • Robert M Carey
  • Wenhong Cao
  • Zhenqi Liu
چکیده

Angiotensin II causes vasoconstriction via the type 1 receptor (AT(1)R) and vasodilatation through the type 2 receptor (AT(2)R). Both are expressed in muscle microvasculature, where substrate exchanges occur. Whether they modulate basal muscle microvascular perfusion and substrate metabolism is not known. We measured microvascular blood volume (MBV), a measure of microvascular surface area and perfusion, in rats during systemic infusion of angiotensin II at either 1 or 100 ng/kg per minute. Each caused a significant increase in muscle MBV. Likewise, administration of the AT(1)R blocker losartan increased muscle MBV by >3-fold (P<0.001). Hindleg glucose extraction and muscle interstitial oxygen saturation simultaneously increased by 2- to 3-fold. By contrast, infusing AT(2)R antagonist PD123319 significantly decreased muscle MBV by >or=80% (P<0.001). This was associated with a significant decrease in hindleg glucose extraction and muscle oxygen saturation. AT(2)R antagonism and inhibition of NO synthase each blocked the losartan-induced increase in muscle MBV and glucose uptake. In conclusion, angiotensin II acts on both AT(1)R and AT(2)R to regulate basal muscle microvascular perfusion. Basal AT(1)R tone restricts muscle MBV and glucose extraction, whereas basal AT(2)R activity increases muscle MBV and glucose uptake. Pharmacological manipulation of the balance of AT(1)R and AT(2)R activity affords the potential to improve glucose metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiotensin II Receptors Modulate Muscle Microvascular and Metabolic Responses to Insulin In Vivo

OBJECTIVE Angiotensin (ANG) II interacts with insulin-signaling pathways to regulate insulin sensitivity. The type 1 (AT(1)R) and type 2 (AT(2)R) receptors reciprocally regulate basal perfusion of muscle microvasculature. Unopposed AT(2)R activity increases muscle microvascular blood volume (MBV) and glucose extraction, whereas unopposed AT(1)R activity decreases both. The current study examine...

متن کامل

Endothelial Vasodilator Angiotensin Receptors are Changing in Mice with Ageing

Background: The vascular function of Angiotensin II-type-2 receptors in adults is controversial. We sought their location and function in mouse aortic rings at young and old mice. Materials and Methods: Male C57Bl mice (aged 4 and 14 months) were killed by CO2. The descending thoracic aorta was cleaned and dissected into rings. Aortic rings were mounted in Krebs&rsquo; solution at 37 &deg;C an...

متن کامل

Improvement of insulin sensitivity by antagonism of the renin-angiotensin system.

The reduced capacity of insulin to stimulate glucose transport into skeletal muscle, termed insulin resistance, is a primary defect leading to the development of prediabetes and overt type 2 diabetes. Although the etiology of this skeletal muscle insulin resistance is multifactorial, there is accumulating evidence that one contributor is overactivity of the renin-angiotensin system (RAS). Angio...

متن کامل

Losartan increases muscle insulin delivery and rescues insulin's metabolic action during lipid infusion via microvascular recruitment.

Insulin delivery and transendothelial insulin transport are two discrete steps that limit muscle insulin action. Angiotensin II type 1 receptor (AT1R) blockade recruits microvasculature and increases glucose use in muscle. Increased muscle microvascular perfusion is associated with increased muscle delivery and action of insulin. To examine the effect of acute AT1R blockade on muscle insulin up...

متن کامل

Hyperinsulinemia rapidly increases human muscle microvascular perfusion but fails to increase muscle insulin clearance: evidence that a saturable process mediates muscle insulin uptake.

OBJECTIVE Transport of insulin from the central circulation into muscle is rate limiting for the stimulation of glucose metabolism. By recruiting muscle microvasculature, insulin may promote its own movement into muscle interstitium. We tested whether in humans, as in the rat, insulin exerts an early action to recruit microvasculature within skeletal muscle. We further hypothesized that expansi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nihon rinsho. Japanese journal of clinical medicine

دوره 67 4  شماره 

صفحات  -

تاریخ انتشار 2009